Consistency and robustness of kernel-based regression in convex risk minimization

نویسندگان

  • ANDREAS CHRISTMANN
  • INGO STEINWART
چکیده

We investigate statistical properties for a broad class of modern kernel-based regression (KBR) methods. These kernel methods were developed during the last decade and are inspired by convex risk minimization in infinite-dimensional Hilbert spaces. One leading example is support vector regression. We first describe the relationship between the loss function L of the KBR method and the tail of the response variable. We then establish the L-risk consistency for KBR which gives the mathematical justification for the statement that these methods are able to “learn”. Then we consider robustness properties of such kernel methods. In particular, our results allow us to choose the loss function and the kernel to obtain computationally tractable and consistent KBR methods that have bounded influence functions. Furthermore, bounds for the bias and for the sensitivity curve, which is a finite sample version of the influence function, are developed, and the relationship between KBR and classical M estimators is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consistency and Robustness of Kernel Based Regression

We investigate properties of kernel based regression (KBR) methods which are inspired by the convex risk minimization method of support vector machines. We first describe the relation between the used loss function of the KBR method and the tail of the response variable Y . We then establish a consistency result for KBR and give assumptions for the existence of the influence function. In partic...

متن کامل

On Robustness Properties of Convex Risk Minimization Methods for Pattern Recognition

The paper brings together methods from two disciplines: machine learning theory and robust statistics. Robustness properties of machine learning methods based on convex risk minimization are investigated for the problem of pattern recognition. Assumptions are given for the existence of the influence function of the classifiers and for bounds of the influence function. Kernel logistic regression...

متن کامل

Regression depth and support vector machine

The regression depth method (RDM) proposed by Rousseeuw and Hubert [RH99] plays an important role in the area of robust regression for a continuous response variable. Christmann and Rousseeuw [CR01] showed that RDM is also useful for the case of binary regression. Vapnik’s convex risk minimization principle [Vap98] has a dominating role in statistical machine learning theory. Important special ...

متن کامل

Bouligand Derivatives and Robustness of Support Vector Machines for Regression

We investigate robustness properties for a broad class of support vector machines with non-smooth loss functions. These kernel methods are inspired by convex risk minimization in infinite dimensional Hilbert spaces. Leading examples are the support vector machine based on the ε-insensitive loss function, and kernel based quantile regression based on the pinball loss function. Firstly, we propos...

متن کامل

Robustness of reweighted Least Squares Kernel Based Regression

Kernel Based Regression (KBR) minimizes a convex risk over a possibly infinite dimensional reproducing kernel Hilbert space. Recently it was shown that KBR with a least squares loss function may have some undesirable properties from a robustness point of view: even very small amounts of outliers can dramatically affect the estimates. KBR with other loss functions is more robust, but often gives...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007